Контакты

Бесколлекторный мотор из асинхронного двигателя своими руками. Трехфазный бесколлекторный двигатель

Бесколлекторные двигатели на сегодняшний день являются довольно распространенными. Применяются данные устройства чаще всего с электроприводами. Также их можно встретить на различном холодильном оборудовании. В промышленной сфере они задействованы в системах нагрева.

Дополнительно бесколлекторные модификации устанавливаются в обычные вентиляторы для кондиционирования воздуха. В наше время на рынке представлено множество моделей с датчиками и без них. При этом по типу регуляторов модификации довольно сильно отличаются. Однако чтобы разобраться в данном вопросе более подробно, необходимо изучить устройство простого двигателя.

Устройство бесколлекторной модели

Если рассматривать обычный трехфазный бесколлекторный двигатель, то катушка индуктивности у него устанавливается медного типа. Статоры используются как широтные, так и импульсные. Зубцы у них применяются разного размера. Как говорилось ранее, существуют модели с датчиками, а также без них.

Для фиксации статора используются колодки. Непосредственно процесс индукции происходит за счет обмотки статора. Роторы чаше всего применяются двухполюсного типа. Сердечники у них устанавливаются стальные. Для закрепления магнитов на моделях имеются специальные пазы. Непосредственно управление бесколлекторным двигателем происходит при помощи регуляторов, которые располагаются у статора. Для подачи напряжения на внешнюю обмотку в устройствах устанавливаются изолирующие затворы.

Двухразрядные модели

Безколлекторные эл. двигатели данного типа часто используются в морозильном оборудовании. При этом компрессоры для них подходят самые разнообразные. В среднем мощность модели способна достигать 3 кВт. Схема бесколлекторного двигателя катушки чаще всего включает двойного типа с медной обмоткой. Статоры устанавливаются только импульсные. В зависимости от производителя длина зубцов может меняться. Датчики используются как электрического, так и индуктивного типа. Для систем нагрева указанные модификации походят плохо.

Также следует учитывать, что сердечники в бесколлекторных двигателях встречаются в основном стальные. При этом пазы для магнитов используются довольно широкие, а расположены они очень близко друг к другу. За счет этого частотность у устройств может быть высокой. Регуляторы для таких модификаций подбираются чаще всего одноканального типа.

Трехразрядные модификации

Трехразрядный бесколлекторный двигатель отлично подходит для систем вентилирования. Датчики у него используются, как правило, электрического типа. При этом катушки устанавливаются довольно широкие. За счет этого процесс индукции осуществляется быстро. В данном случае частотность устройства зависит от статора. Обмотка у него чаще всего встречается медного типа.

Предельное напряжение трехразрядные бесколлекторные двигатели способны выдерживать на уровне 20 В. Тиристорные модификации в наше время встречаются довольно редко. Также следует отметить, что магниты в таких конфигурациях могут устанавливаться как на внешней, так и на внутренней стороне роторной пластины.

Четырехразрядные модификации своими руками

Сделать четырехразрядный бесколлекторный двигатель своими руками можно абсолютно просто. Для этого необходимо в первую очередь заготовить пластину с пазами. Толщина металла в данном случае должна составлять примерно 2.3 мм. Пазы в этой ситуации обязаны находиться на расстоянии в 1.2 см. Если рассматривать простую модель, то катушку следует подбирать диаметром в 3.3 см. При этом пороговое напряжение она обязана выдерживать на уровне 20 В.

Колодки для устройства чаще всего подбираются стальные. В данном случае многое зависит от размеров роторной пластины. Непосредственно статор надо использовать с двойной обмоткой. При этом сердечник важно заготавливать стального типа. Если рассматривать модификации без регуляторов, то закончить сборку бесколлекторного двигателя можно установкой изолирующего затвора. При этом контакты устройства необходимо вывести на внешнюю сторону пластины. Для обычного вентилятора такие бесколлекторные модели подойдут идеально.

Устройства с регулятором АВР2

Бесколлекторный двигатель с регуляторами данного типа на сегодняшний день является весьма востребованным. Подходят указанные системы больше всего для приборов кондиционирования. Также они в промышленной сфере широко используются для холодильного оборудования. Они способны работать с электроприводами различной частотности. Катушки у них чаще всего устанавливаются двойного типа. При этом статоры можно встретить только импульсные. В свою очередь, широтные модификации являются не сильно распространенными.

Датчики в бесколлекторных двигателях с регуляторами данной серии используются только индуктивные. При этом частотность устройства можно отслеживать по системе индикации. Колодки, как правило, устанавливаются контактного типа, и крепиться они могут непосредственно на статорной пластине. Регулятор бесколлекторного двигателя в данном случае позволяет менять частотность довольно плавно. Происходит данный процесс за счет изменения параметра выходного напряжения. В целом эти модификации являются очень компактными.

Двигатели с регуляторами АВР5

Бесколлекторный двигатель с регулятором данной серии часто применяется в промышленной сфере для управления различными электроприборами. В бытовых устройствах он устанавливается довольно редко. Особенностью таких бесколлекторных модификаций можно назвать повышенную частотность. При этом параметр мощности у них менять просто. Катушки в данных модификациях встречаются самые разнообразные. Также следует отметить, что магниты чаще всего устанавливаются на внешней стороне роторной коробки.

Затворы в основном используются изолированного типа. Монтироваться они могут как у статорной коробки, так и сердечника. В целом регулировка устройства происходит довольно быстро. Однако следует учитывать также и недостатки таких систем. В первую очередь они связаны с перебоями питания при низких частотах. Также важно упомянуть, что у моделей данного типа потребление электроэнергии довольно большое. При этом для управления интегральными электроприводами устройства не подходят.

Использование регуляторов АВТ6

Данного типа регулятор скорости бесколлекторного двигателя на сегодняшний день пользуется большим спросом. Отличительной его особенностью можно смело назвать универсальность. Устанавливаются регуляторы, как правило, на бесколлекторные двигатели, мощность которых не превышает 2 кВт. При этом для управления системами вентилирования указанные устройства подходят идеально. Контроллеры в данном случае могут устанавливаться самые разнообразные.

Скорость передачи сигнала в данном случае зависит от типа системы управления. Если рассматривать тиристорные модификации, то они обладают довольно высокой проводимостью. При этом проблемы с магнитными помехами у них возникают редко. Самостоятельно собрать модель данного типа довольно сложно. В этой ситуации затворы чаще всего подбираются неизолированные.

Модели с датчиками Холла

Бесколлекторные двигатели с датчиками Холла широко используются в приборах нагрева. При этом подходят они для электроприводов различного класса. Непосредственно регуляторы используются только одноканальные. Катушки в устройстве устанавливаются медного типа. При этом величина зубцов модели зависит исключительно от производителя. Непосредственно колодки для устройств подбираются контактного типа. На сегодняшний день датчики чаще всего устанавливаются со стороны статора. Однако на рынке представлены также модели с нижним их расположением. В таком случае габариты бесколлекторного двигателя будут немного большими.

Низкочастотные модификации

Низкочастотный бесколлекторный двигатель на сегодняшний день активно используется в промышленной сфере. При этом для морозильных камер он подходит идеально. В среднем параметр полезного действия у него находится на уровне 70%. Затворы у моделей чаще всего используются с изоляторами. При этом тиристорные модификации в наше время встречаются довольно часто.

Системы управления используются серии АВР. При этом частотность модели зависит от типа сердечника и не только. Также следует учитывать, что существуют модели с двойными роторами. В данном случае магниты располагаются вдоль пластины. Статоры чаще всего используются с медной обмоткой. При этом низкочастотные бесколлекторные двигатели с датчиками встречаются очень редко.

Высокочастотные двигатели

Указанные модификации наиболее востребованными считаются для резонансных электроприводов. В промышленности такие модели встречаются довольно часто. Датчики у них устанавливаются как электронного, так индуктивного типа. При этом катушки чаще всего имеются на внешней стороне пластины. Роторы монтируют как в горизонтальном, так и вертикальном положении.

Непосредственно изменение частотности у таких устройств осуществляется через контроллеры. Устанавливаются они, как правило, со сложной контактной системой. Непосредственно стартеры используются только двойного типа. В свою очередь, системы управления зависят от мощности бесколлекторного устройства.

Опубліковано 11.04.2014

Схема регулятора

Схема условно разделена на две части: левая – микроконтроллер с логикой, правая – силовая часть. Силовую часть можно модифицировать для работы с двигателями другой мощности или с другим питающим напряжением.

Контроллер – ATMEGA168 . Гурманы могут сказать, что хватило бы и ATMEGA88 , а AT90PWM3 – это было бы “вааще по феншую”. Первый регулятор я как раз делал “по феншую”. Если у Вас есть возможность применять AT90PWM3 – это будет наиболее подходящий выбор. Но для моих задумок решительно не хватало 8 килобайт памяти. Поэтому я применил микроконтроллер ATMEGA168 .

Эта схема задумывалась как испытательный стенд. На котором предполагалось создать универсальный настраиваемый регулятор для работы с различными “калибрами” бесколлекторных двигателей: как с датчиками, так и без датчиков положения. В этой статье я опишу схему и принцип работы прошивки регулятора для управления бесколлекторными двигателями с датчиками Холла и без датчиков.

Питание

Питание схемы раздельное. Поскольку драйверы ключей требуют питание от 10В до 20В, используется питание 12В. Питание микроконтроллера осуществляется через DC-DC преобразователь, собранный на микросхеме . Можете применять линейный стабилизатор с выходным напряжением 5В. Предполагается, что напряжение VD может быть от 12В и выше и ограничивается возможностями драйвера ключей и самими ключами.

ШИМ и сигналы для ключей

На выходе OC0B(PD5) микроконтроллера U1 генерируется ШИМ сигнал. Он поступает на переключатели JP2 , JP3 . Этими переключателями можно выбрать вариант подачи ШИМ на ключи (на верхние, нижние или на все ключи). На схеме переключатель JP2 установлен в положение для подачи ШИМ сигнала на верхние ключи. Переключатель JP3 на схеме установлен в положение для отключения подачи ШИМ сигнала на нижние ключи. Не трудно догадаться, что если отключить ШИМ на верхних и нижних ключах, мы получим на выходе перманентный “полный вперед”, что может разорвать двигатель или регулятор в хлам. Поэтому, не забываем включать голову, переключая их. Если Вам не потребуется такие эксперименты – и Вы знаете, на какие ключи Вы будите подавать ШИМ, а на какие нет, просто не делайте переключателей. После переключателей ШИМ сигнал поступает на входы элементы логики “&” (U2 , U3 ). На эту же логику поступают 6 сигналов с выводов микроконтроллера PB0..PB5 , которые являются управляющими сигналами для 6 ключей. Таким образом, логические элементы (U2 , U3 ) накладывают ШИМ сигнал на управляющие сигналы. Если Вы уверены, что будете подавать ШИМ, скажем, только на нижние ключи, тогда ненужные элементы (U2 ) можно исключить из схемы, а соответствующие сигналы с микроконтроллера подавать на драйверы ключей. Т.е. на драйверы верхних ключей сигналы пойдут напрямую с микроконтроллера, а на нижние – через логические элементы.

Обратная связь (контроль напряжения фаз двигателя)

Напряжение фаз двигателя W ,V ,U через резистивные делители W – (R17,R25) , V – (R18, R24) , U – (R19, R23) поступают на входа контроллера ADC0(PC0) , ADC1(PC1) , ADC2(PC2) . Эти выводы используются как входы компараторов. (В примере описанном в AVR444.pdf от компании Atmel применяют не компараторы, а измерение напряжения с помощью ADC (АЦП). Я отказался от этого метода, поскольку время преобразования ADC не позволяло управлять скоростными двигателями). Резистивные делители выбираются таким образом, чтобы напряжение, подаваемое на вход микроконтроллера, не превышало допустимое. В данном случае, резисторами 10К и 5К делится на 3. Т.е. При питании двигателя 12В. на микроконтроллер будет подаваться 12В*5К/(10К+5К) = 4В . Опорное напряжение для компаратора (вход AIN1 ) подается от половинного напряжения питания двигателя через делитель (R5 , R6 , R7 , R8 ). Обратите внимание, резисторы (R5 , R6 ) по номиналу такие же, как и (R17,R25 ), (R18, R24 ),(R19, R23 ). Далее напряжение уменьшается вдвое делителем R7, R8 , после чего поступает на ногу AIN1 внутреннего компаратора микроконтроллера. Переключатель JP1 позволяет переключить опорное напряжение на напряжение “средней точки” формируемое резисторами (R20, R21, R22 ). Это делалось для экспериментов и себя не оправдало. Если нет в необходимости, JP1, R20, R21, R22 можно исключить из схемы.

Датчики Холла

Поскольку регулятор универсальный, он должен принимать сигналы от датчиков Холла в том случае, если используется двигатель с датчиками. Предполагается, что датчики Холла дискретные, тип SS41 . Допускается применение и других типов датчиков с дискретным выходом. Сигналы от трех датчиков поступают через резисторы R11, R12, R13 на переключатели JP4, JP5, JP6 . Резисторы R16, R15, R14 выступают в качестве подтягивающих резисторов. C7, С8, С9 – фильтрующие конденсаторы. Переключателями JP4, JP5, JP6 выбирается тип обратной связи с двигателем. Кроме изменения положения переключателей в программных настройках регулятора следует указать соответствующий тип двигателя (Sensorless или Sensored ).

Измерения аналоговых сигналов

На вход ADC5(PC5) через делитель R5, R6 подается напряжения питания двигателя. Это напряжение контролируется микроконтроллером.

На вход ADC3(PC3) поступает аналоговый сигнал от датчика тока. Датчик тока ACS756SA . Это датчик тока на основе эффекта Холла. Преимущество этого датчика в том, что он не использует шунт, а значит, имеет внутреннее сопротивление близкое к нулю, поэтому на нем не происходит тепловыделения. Кроме того, выход датчика аналоговый в пределах 5В, поэтому без каких-либо преобразований подается на вход АЦП микроконтроллера, что упрощает схему. Если потребуется датчик с большим диапазоном измерения тока, Вы просто заменяете существующий датчик новым, абсолютно не изменяя схему.

Если Вам хочется использовать шунт с последующей схемой усиления, согласования – пожалуйста.

Задающие сигналы

Сигнал, задающий обороты двигателя, с потенциометра RV1 поступает на вход ADC4(PC4) . Обратите внимание на резистор R9 – он шунтирует сигнал в случае обрыва провода к потенциометру.

Кроме того, есть вход RC сигнала, который повсеместно используется в дистанционно управляемых моделях. Выбор управляющего входа и его калибровка выполняется в программных настройках регулятора.

UART интерфейс

Сигналы TX, RX используются для настройки регулятора и выдачи информации о состоянии регулятора – обороты двигателя, ток, напряжение питания и т.п. Для настройки регулятора его можно подключить к USB порту компьютера, используя . Настройка выполняется через любую программу терминала. Например: Hyperterminal или Putty .

Прочее

Также имеются контакты реверса – вывод микроконтроллера PD3 . Если замкнуть эти контакты перед стартом двигателя, двигатель будет вращаться в обратном направлении.

Светодиод, сигнализирующий о состоянии регулятора, подключен к выводу PD4 .

Силовая часть

Драйвера ключей использовались IR2101 . У этого драйвера одно преимущество – низкая цена. Для слаботочных систем подойдет, для мощных ключей IR2101 будет слабоват. Один драйвер управляет двумя “N” канальными MOSFET транзисторами (верхним и нижним). Нам понадобиться три таких микросхемы.

Ключи нужно выбирать в зависимости от максимального тока и напряжения питания двигателя (выбору ключей и драйверов будет посвящена отдельная статья). На схеме обозначены IR540 , в реальности использовались K3069 . K3069 рассчитаны на напряжение 60В и ток 75А. Это явный перебор, но мне они достались даром в большом количестве (желаю и Вам такого счастья).

Конденсатор С19 включается параллельно питающей батареи. Чем больше его емкость – тем лучше. Этот конденсатор защищает батарею от бросков тока и ключи от значительной просадки напряжения. При отсутствии этого конденсатора Вам обеспечены как минимум проблемы с ключами. Если подключать батарею сразу к VD – может проскакивать искра. Искрогасящий резистор R32 используется в момент подключения к питающей батарее. Сразу подключаем “” батареи, затем подаем “+ ” на контакт Antispark . Ток течет через резистор и плавно заряжает конденсатор С19 . Через несколько секунд, подключаем контакт батареи к VD . При питании 12В можно Antispark не делать.

Возможности прошивки

  • возможность управлять двигателями с датчиками и без;
  • для бездатчикового двигателя три вида старта: без определения первоначального положения; с определением первоначального положения; комбинированный;
  • настройка угла опережения фазы для бездатчикового двигателя с шагом 1 градус;
  • возможность использовать один из двух задающих входов: 1-аналоговый, 2-RC;
  • калибровка входных сигналов;
  • реверс двигателя;
  • настройка регулятора по порту UART и получение данных от регулятора во время работы (обороты, ток, напряжение батареи);
  • частота ШИМ 16, 32 КГц.
  • настройка уровня ШИМ сигнала для старта двигателя;
  • контроль напряжения батарей. Два порога: ограничение и отсечка. При снижении напряжения батареи до порога ограничения обороты двигателя понижаются. При снижении ниже порога отсечки происходит полная остановка;
  • контроль тока двигателя. Два порога: ограничение и отсечка;
  • настраиваемый демпфер задающего сигнала;
  • настройка Dead time для ключей

Работа регулятора

Включение

Напряжение питания регулятора и двигателя раздельное, поэтому может возникнуть вопрос: в какой последовательности подавать напряжение. Я рекомендую подавать напряжение на схему регулятора. А затем подключать напряжение питания двигателя. Хотя при другой последовательности проблем не возникало. Соответственно, при одновременной подаче напряжения также проблем не возникало.

После включения двигатель издает 1 короткий сигнал (если звук не отключен), включается и постоянно светится светодиод. Регулятор готов к работе.

Для запуска двигателя следует увеличивать величину задающего сигнала. В случае использования задающего потенциометра, запуск двигателя начнется при достижении задающего напряжения уровня примерно 0.14 В. При необходимости можно выполнить калибровку входного сигнала, что позволяет использовать раные диапазоны управляющих напряжений. По умолчанию настроен демпфер задающего сигнала. При резком скачке задающего сигнала обороты двигателя будут расти плавно. Демпфер имеет несимметричную характеристику. Сброс оборотов происходит без задержки. При необходимости демпфер можно настроить или вовсе отключить.

Запуск

Запуск бездатчикового двигателя выполняется с установленным в настройках уровнем стартового напряжения. В момент старта положение ручки газа роли значения не имеет. При неудачной попытке старта попытка запуска повторяется, пока двигатель не начнет нормально вращаться. Если двигатель не может запуститься в течение 2-3 секунд попытки следует прекратить, убрать газ и перейти к настройке регулятора.

При опрокидывании двигателя или механическом заклинивании ротора срабатывает защита, и регулятор пытается перезапустить двигатель.

Запуск двигателя с датчиками Холла также выполняется с применением настроек для старта двигателя. Т.е. если для запуска двигателя с датчиками дать полный газ, то регулятор подаст напряжение, которое указано в настройках для старта. И только после того, как двигатель начнет вращаться, будет подано полное напряжение. Это несколько нестандартно для двигателя с датчиками, поскольку такие двигатели в основном применяются как тяговые, а в данном случае достичь максимального крутящего момента на старте, возможно, будет сложно. Тем не менее, в данном регуляторе присутствует такая особенность, которая защищает двигатель и регулятор от выхода со строя при механическом заклинивании двигателя.

Во время работы регулятор выдает данные об оборотах двигателя, токе, напряжении батарей через порт UART в формате:

E:минимальное напряжение батареи: максимальное напряжение батареи: максимальный ток: обороты двигателя (об/мин) A:текущее напряжение батареи: текущий ток: текущие обороты двигателя (об/мин)

Данные выдаются с периодичностью примерно 1 секунда. Скорость передачи по порту 9600.

Настройка регулятора

Для настройки регулятора его следует подключить к компьютеру с помощью . Скорость передачи по порту 9600.

Переход регулятора в режим настройки происходит при включении регулятора, когда задающий сигнал потенциометра больше нуля. Т.е. Для перевода регулятора в режим настройки следует повернуть ручку задающего потенциометра, после чего включить регулятор. В терминале появится приглашение в виде символа “> “. После чего можно вводить команды.

Регулятор воспринимает следующие команды (в разных версиях прошивки набор настроек и команд может отличаться):

h – вывод списка команд;
? – вывод настроек;
c – калибровка задающего сигнала;
d – сброс настроек к заводским настройкам.

команда “? ” выводит в терминал список всех доступных настроек и их значение. Например:

Motor.type=0 motor.magnets=12 motor.angle=7 motor.start.type=0 motor.start.time=10 pwm=32 pwm.start=15 pwm.min=10 voltage.limit=128 voltage.cutoff=120 current.limit=200 current.cutoff=250 system.sound=1 system.input=0 system.damper=10 system.deadtime=1

Изменить нужную настройку можно командой следующего формата:

<настройка>=<значение>

Например:

pwm.start=15

Если команда была дана корректно, настройка будет применена и сохранена. Проверить текущие настройки после их изменения можно командой “? “.

Измерения аналоговых сигналов (напряжение, ток) выполняются с помощью АЦП микроконтроллера. АЦП работает в 8-ми битном режиме. Точность измерения занижена намеренно для обеспечения приемлемой скорости преобразования аналогового сигнала. Соответственно, все аналоговые величины регулятор выдает в виде 8-ми битного числа, т.е. от 0 до 255.

Назначение настроек:

Список настроек, их описание:

Параметр Описание Значение
motor.type Тип мотора 0-Sensorless; 1-Sensored
motor.magnets Кол.во магнитов в роторе двигателя. Изпользуется только для расчета оборотов двигателя. 0..255, шт.
motor.angle Угол опережения фазы. Используется только для Sensorless двигателей. 0..30, градусов
motor.start.type Тип старта. Используется только для Sensorless двигателей. 0-без определения положения ротора; 1-с определением положения ротора; 2-комбинированный;
motor.start.time Время старта. 0..255, мс
pwm Частота PWM 16, 32, КГц
pwm.start Значение PWM (%) для старта двигателя. 0..50 %
pwm.min Значение минимального значения PWM (%), при котором двигатель вращается. 0..30 %
voltage.limit Напряжение батареи, при котором следует ограничивать мощность, подаваемую на двигатель. Указывается в показаниях ADC. 0..255*
voltage.cutoff Напряжение батареи, при котором следует выключать двигатель. Указывается в показаниях ADC. 0..255*
current.limit Ток, при котором следует ограничивать мощность, подаваемую на двигатель. Указывается в показаниях ADC. 0..255**
current.cutoff Ток, при котором следует выключать двигатель. Указывается в показаниях ADC. 0..255**
system.sound Включить/выключить звуковой сигнал, издаваемый двигателем 0-выключен; 1-включен;
system.input Задающий сигнал 0-потенциометр; 1-RC сигнал;
system.damper Демпфирование входного сигнала 0..255, условные единицы
system.deadtime Значение Dead Time для ключей в микросекундах 0..2, мкс

* – числовое значение 8-ми битного аналого цифрового преобразователя.
Рассчитывается по формуле: ADC = (U*R6/(R5+R6))*255/5
Где: U – напряжение в Вольтах; R5, R6 – сопротивление резисторов делителя в Омах.

Как только я начал заниматся авиамоделизмом, мне сразу стало интересно почему у двигателя три провода, почему он такой маленький и в то же время такой мощный и зачем ему нужен регулятор скорости... Прошло время, и я во всем разобрался. И дальше поставил перед собой задачу сделать своими руками бесколлекторный двигатель.

Принцип работы электрического двигателя:
В основу работы любой электрической машины положено явление электромагнитной индукции. Поэтому если в магнитное поле поместить рамку с током, то на неё подействует сила Ампера , которая создаст вращательный момент. Рамка начнет поворачиваться и остановится в положении отсутствия момента, создаваемого силой Ампера.


Устройство электрического двигателя:
Любой электрический двигатель состоит из неподвижной части - Статора и подвижной части - Ротора . Для того чтобы началось вращение, нужно по очереди менять направление тока. Эту функцию и выполняет Коллектор (щетки).

Бесколлекторный двигатель - это двигатель ПОСТОЯННОГО ТОКА без коллектора, в котором функции коллектора выполняет электроника. (Если у двигателя три провода, это не значит что он работает от трехфазного переменного тока! А работает он от "порций" коротких импульсов постоянного тока, и не хочу вас шокировать, но те же двигатели которые используются в кулерах, тоже бесколлекторные, хоть они и имеют всего два провода питания постоянного тока)

Устройство бесколлекторного двигателя:
Inrunner
(произносится как "инраннер"). Двигатель имеет расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри магнитный ротор.


Outrunner
(произносится как "аутраннер"). Двигатель имеет неподвижные обмотки (внутри) вокруг которых вращается корпус с помещенным на его внутреннюю стенку постоянными магнитами.

Принцип работы:
Для того чтобы бесколлекторный двигатель начал вращаться, напряжение на обмотки двигателя надо подавать синхронно. Синхронизация может быть организованна с использованием внешних датчиков (оптические или датчики холла), так и на основе противоЭДС (бездатчиковый), которая возникает в двигателе при его вращении.

Бездатчиковое управление:
Существуют бесколлекторные двигатели без каких либо датчиков положения. В таких двигателях определение положения ротора выполняется путем измерения ЭДС на свободной фазе. Мы помним, что в каждый момент времени к одной из фаз (А) подключен «+» к другой (В) «-» питания, одна из фаз остается свободной. Вращаясь, двигатель наводит ЭДС (т.е. в следствии закона электромагнитной индукции в катушке образуется индукционный ток) в свободной обмотке. По мере вращения напряжение на свободной фазе (С) изменяется. Измеряя напряжение на свободной фазе, можно определить момент переключения к следующему положению ротора.
Что бы измерить это напряжение изпользуется метод "виртуальной точки". Суть заключается в том, что, зная сопротивление всех обмоток и начальное напряжение, можно виртуально "переложить провод" в место соединения всех обмоток:
Регулятор скорости бесколлекторного двигателя:
Бесколлекторный двигатель без электроники - просто железка, т.к. при отсутствии регулятора, мы не можем просто подключить напряжение на него, чтоб он просто начал нормальное вращение. Регулятор скорости - это довольно сложная система радиокомпонентов, т.к. она должна:
1) Определять начальное положение ротора для запуска электродвигателя
2) Управлять электродвигателем на низких скоростях
3) Разгонять электродвигатель до номинальной (заданной) скорости вращения
4) Поддерживать максимальный момент вращения

Принципиальная схема регулятора скорости (вентильная):


Бесколлекторные двигатели были придуманы на заре появления электричества, однако систему управления к ним никто не мог сделать. И только с развитием электроники: с появлением мощных полупроводниковых транзисторов и микроконтроллеров, бесколлекторные двигатели стали применятся в быту (первое промышленное использование в 60-х годах).

Достоинства и недостатки бесколлекторных двигателей:

Достоинства:
-Частота вращения изменяется в широком диапазоне
-Возможность использования во взрывоопасной и агрессивной среде
-Большая перегрузочная способность по моменту
-Высокие энергетические показатели (КПД более 90 %)
-Большой срок службы, высокая надёжность и повышенный ресурс работы за счёт отсутствия скользящих электрических контактов

Недостатки:
-Относительно сложная система управления двигателем
-Высокая стоимость двигателя, обусловленная использованием дорогостоящих материалов в конструкции ротора (магниты, подшипники, валы)
Разобравшись с теорией, перейдем к практике: спроектируем и сделаем двигатель для пилотажной модели МХ-2.

Список материалов и оборудования:
1) Проволока (взятая из старых трансформаторов)
2) Магниты (купленные в интернете)
3) Статор (барашек)
4) Вал
5) Подшипники
6) Дюралюминий
7) Термоусадка
8) Доспуп к неограниченному техническому хламу
9) Доступ к инструментам
10) Прямые руки:)

Ход работы:
1) С самого начала решаем:

Для чего делаем двигатель?
На что он должен быть рассчитан?
В чем мы ограничены?

В моем случае: я делаю двигатель для самолета, значит пускай он будет внешнего вращения; рассчитан он должен на то, что он должен выдать 1400 грамм тяги при трех-баночном аккумуляторе; ограничен я в весе и в размере. Однако с чего же начать? Ответ на этот вопрос прост: с самой трудной детали, т.е. с такой детали, которую легче просто найти, а все остальное подгонять под неё. Я так и поступил. После многих неудачных попыток сделать статор из листовой мягкой стали, мне стало понятно, что лучше найти её. Нашел я её в старой видеоголовке от видеорекоудора.

2) Обмотка трехфазного бесколлекторного двигателя выполняется изолированным медным проводом, от сечения которого зависит значение силы тока, а значит и мощность двигателя. Незабываем что, чем толще проволока, тем больше оборотов, но слабее крутящий момент. Подбор сечения:

1А - 0.05мм; 15А - 0.33мм; 40А - 0.7мм

3А - 0.11мм; 20А - 0.4мм; 50А - 0.8мм

10А - 0.25мм; 30А - 0.55мм; 60А - 0.95мм


3) Начинаем наматывать на полюса проволоку. Чем больше витков (13) намотано на зуб, тем большее магнитное поле. Чем сильнее поле, тем больший крутящий момент и меньшее количество оборотов. Для получения высоких оборотов, необходимо мотать меньшее количество витков. Но вместе с этим падает и крутящий момент. Для компенсации момента, обычно на мотор подают более высокое напряжение.
4) Дальше выбираем способ соединения обмотки: звездой или треугольником. Соединение звездой дает больший крутящий момент, но меньшее количество оборотов, чем соединение треугольником в 1.73 раз. (впоследствии было выбрано соединение треугольник)

5) Выбираем магниты. Количество полюсов на роторе должно быть четным (14). Форма применяемых магнитов обычно прямоугольная. Размер магнитов зависит от геометрии двигателя и характеристик мотора. Чем сильнее применяемые магниты, тем выше момент силы, развиваемый двигателем на валу. Также чем больше количество полюсов, тем больше момент, но меньше оборотов. Магниты на роторе закрепляются с помощью специального термоклея.

Испытания данного двигателя я проводил на созданной мной витномоторной установке, которая позволяет измерить тягу, мощность и обороты двигателя.

Чтобы увидеть отличия соединений "звезда" и "треугольник" я соединял по разному обмотки:

В итоге получился двигатель соответствующий характеристикам самолета, масса которого 1400 грамм.

Характеристики полученного двигателя:
Потребляемый ток: 34.1А
Ток холостого хода: 2.1А
Сопротивление обмоток: 0.02 Ом
Количество полюсов: 14
Обороты: 8400 об/мин

Видеоотчет испытания двигателя на самолете... Мягкой посадки:D

Расчет КПД двигателя:


Очень хороший показатель... Хотя можно было еще выше добиться...

Выводы:
1) У бесколлекторных двигателей высокая эффективность и КПД
2) Бесколлекторные двигатели компактны
3) Бесколлекторные двигатели можно использовать во взрывоопасных средах
4) Соединение звездой дает больший крутящий момент, но меньшее количество оборотов в 1.73 раза, чем соединение треугольником.

Таким образом, изготовить собственный бесколлекторный мотор для пилотажной модели самолета- задача выполнимая

Если у вас есть вопросы или вам что-то не понятно, задавайте мне вопросы в комметариях этой статьи. Удачи всем)


Данная статья подробно описывает процесс перемотки электрического бесколлекторного мотора в домашних условиях. На первый взгляд этот процесс может показаться трудоемким и долгим, но если разобраться, то одна перемотка двигателя займет не больше часа.
Под перемотку попал двигатель

Материалы :
- Проволока (0,3 мм)
- Лак
- Термоусадка (2 мм и 5 мм)

Инструменты :
- Ножницы
- Кусачки
- Паяльник
- Припой и кислота
- Наждачка (надфиль)
- Зажигалка

Шаг 1. Подготовка двигателя и проволоки.

Снимаем с вала двигателя стопорную шайбу и вынимаем статор.


Сматываем старую обмотку со статора. Рекомендую посчитать количество витков на одном зубе. Диаметр старой проволоки можно узнать, намотав 10 витков на карандаш, измерить линейкой ширину этой намотки и разделить на 10.


Внимательно осматриваем зубы статора на наличие потертостей защитной эмали. При необходимости замазываем их лаком (можно даже лаком для ногтей).


Фломастером или маркером для дисков нумеруем зубы статора, чтобы не перепутать и не намотать проволоку не на тот зуб.


В данном случае проволока диаметром 0,3 мм будет мотаться в две жилы по 16 витков на один зуб. Это примерно 50 см сложенной вдвое проволоки на один зуб + 20 см на выводы.

Так как один провод мотается на 4 зуба с двумя выводами, а зубов всего 12, - нам нужно три двойных провода длиной около 2,5 метров. Лучше пусть будет с запасом, чем не хватит пары витков на последний зуб.

Шаг 2. Обматывание зубов статора.

Обматывание будет разделено на три этапа, по количеству проводов. Чтобы не запутываться в выводах проводов, можно отмечать их кусочками изоленты или пластыря с надписями.

Я сознательно не прикладываю отдельные фотографии каждого обмотанного зуба – гораздо больше скажут и покажут цветные схемы.

Провод №1:

Схема намотки


Оставляем около 10 см проволоки для создания вывода (S1).
Наматываем первый провод (на схеме - оранжевый ) на зуб №2 по часовой стрелке. Чем плотнее и ровнее будут витки, тем больше всего витков влезет на зубы статора.
После того, как намотали 16 витков, прокладываем провод к зубу №1 и наматываем против часовой стрелки тоже 16 витков.


№7 и наматываем 16 витков по часовой стрелке.
№8 и наматываем 16 витков против часовой стрелки.
Оставляем 10 см провода для создания вывода (E1), остальное можно отрезать.
Все, первый провод намотан.

Провод №2:

Схема намотки


Оставляем около 10 см проволоки для создания вывода (S2).
Наматываем 16 витков второго провода (на схеме - зеленый ) на зуб №6 по часовой стрелке.
Прокладываем провод к зубу №5 и наматываем 16 витков против часовой стрелки.
Дальше протягиваем провод к зубу №11 и наматываем 16 витков по часовой стрелке.
Затем прокладываем провод к зубу №12 и наматываем 16 витков против часовой стрелки.
Оставляем 10 см провода для создания вывода (E2), остальное отрезаем.
Второй провод намотан.

Провод №3:

Схема намотки


Оставляем около 10 см проволоки для создания вывода (S3).
Наматываем 16 витков второго провода (на схеме - синий ) на зуб №10 по часовой стрелке.
Прокладываем провод к зубу №9 и наматываем 16 витков против часовой стрелки.
Дальше протягиваем провод к зубу №3 и наматываем 16 витков по часовой стрелке.
Затем прокладываем провод к зубу №4 и наматываем 16 витков против часовой стрелки.
Оставляем 10 см провода для создания вывода (E3), остальное отрезаем.
Третий провод намотан.

Шаг 3. Соединение выводов обмотки.

Схема соединения


Вывод S1 и E2 (зубы №2 и №12 ) скручиваем у основания зубов, делая хвостик длиной 5-7 см.
Аналогично скручиваем выводы S2 и E3 (зубы №6 и №4 ), а также выводы S3 и Е1 (зубы №10 и №8 )


Тонкую термоусадку по всей длине и до самого основания натягиваем на выводы. Затем аккуратно нагреваем ее зажигалкой.


Собираем получившиеся три вывода вместе и стягиваем термоусадкой большего диаметра, натянув ее также до самого основания.

Опубліковано 11.04.2013

Общее устройство (Inrunner, Outrunner)

Бесколлекторный двигатель постоянного тока состоит из ротора с постоянными магнитами и статора с обмотками. Различают два типа двигателей: Inrunner , у которых магниты ротора находятся внутри статора с обмотками, и Outrunner , у которых магниты расположены снаружи и вращаются вокруг неподвижного статора с обмотками.

Схему Inrunner обычно применяют для высокооборотистых двигателей с небольшим количеством полюсов. Outrunner при необходимости получить высокомоментный двигатель со сравнительно небольшими оборотами. Конструктивно Inrunners проще из за того, что неподвижный статор может служить корпусом. К нему могут быть смонтированы крепежные приспособления. В случае Outrunners вращается вся внешняя часть. Крепеж двигателя осуществляется за неподвижную ось либо детали статора. В случае мотор-колеса крепление осуществляется за неподвижную ось статора, провода заводятся к статору через полую ось.

Магниты и полюса

Количество полюсов на роторе четное. Форма применяемых магнитов обычно прямоугольная. Цилиндрические магниты применяются реже. Устанавливаются они с чередованием полюсов.

Количество магнитов не всегда соответствует количеству полюсов. Несколько магнитов могут формировать один полюс:

В этом случае 8 магнитов формируют 4 полюса. Размер магнитов зависит от геометрии двигателя и характеристик мотора. Чем сильнее применяемые магниты, тем выше момент силы, развиваемый двигателем на валу.

Магниты на роторе закрепляются с помощью специального клея. Реже встречаются конструкции с держателем магнитов. Материал ротора может быть магнитопроводящим (стальным), немагнитопроводящим (алюминиевые сплавы, пластики и т.п.), комбинированным.

Обмотки и зубья

Обмотка трехфазного бесколлекторного двигателя выполняется медным проводом. Провод может быть одножильным или состоять из нескольких изолированных жил. Статор выполняется из нескольких сложенных вместе листов магнитопроводящей стали.

Количество зубьев статора должно делиться на количество фаз. т.е. для трехфазного бесколлекторного двигателя количество зубьев статора должно делиться на 3 . Количество зубьев статора может быть как больше так и меньше количества полюсов на роторе. Например существуют моторы со схемами: 9 зубьев/12 магнитов; 51 зуб/46 магнитов.

Двигателя с 3-х зубым статором применяют крайне редко. Поскольку в каждый момент времени работает только две фазы (при включении звездой), магнитные силы воздействуют на ротор не равномерно по всей окружности (см. рис.).

Силы, воздействующие на ротор, стараются его перекосить, что приводит к увеличению вибраций. Для устранения этого эффекта статор делают с большим количеством зубьев, а обмотку распределяют по зубьям всей окружности статора как можно равномернее.

В этом случае магнитные силы, воздействующие на ротор, компенсируют друг друга. Дисбаланса не возникает.

Варианты распределения обмоток фаз по зубьям статора

Вариант обмотки на 9 зубов


Вариант обмотки на 12 зубов

В приведенных схемах число зубов выбрано таким образом, чтобы оно делилось не только на 3 . Например, при 36 зубьях приходится 12 зубьев на одну фазу. 12 зубьев можно распределить так:

Наиболее предпочтительна схема 6 групп по 2 зуба.

Существует двигатель с 51 зубом на статоре! 17 зубов на одну фазу. 17 – это простое число , оно нацело делится только на 1 и на само себя. Как же распределить обмотку по зубьям? Увы, но я не смог найти в литературе примеров и методик, которые помогли бы решить эту задачу. Оказалось, что обмотка распределялась следующим образом:

Рассмотрим реальную схему обмотки.

Обратите внимание, что обмотка имеет разные направления намотки на разных зубьях. Разные направления намотки обозначаются прописными и заглавными буквами. Детально о проектировании обмоток можно прочитать в литературе, предложенной в конце статьи.

Классическая обмотка выполняется одним проводом для одной фазы. Т.е. все обмотки на зубьях одной фазы соединены последовательно.

Обмотки зубьев могут соединяться и параллельно.

Так же могут быть комбинированные включения

Параллельное и комбинированное включение позволяет уменьшить индуктивность обмотки, что приводит к увеличению тока статора (следовательно и мощности) и скорости вращения двигателя.

Обороты электрические и реальные

Если ротор двигателя имеет два полюса, то при одном полном обороте магнитного поля на статоре, ротор совершает один полный оборот. При 4 полюсах, чтобы повернуть вал двигателя на один полный оборот потребуется два оборота магнитного поля на статоре. Чем больше количество полюсов ротора, тем больше потребуется электрических оборотов для вращения вала двигателя на один оборот. Например, имеем 42 магнита на роторе. Для того чтобы провернуть ротор на один оборот, потребуется 42/2=21 электрический оборот. Это свойство можно использовать как своеобразный редуктор. Подобрав необходимое количество полюсов, можно получить двигатель с желаемыми скоростными характеристиками. Кроме того, понимание этого процесса будет нам необходимо в будущем, при выборе параметров регулятора.

Датчики положения

Устройство двигателей без датчиков отличается от двигателей с датчиками только отсутствием последних. Других принципиальных отличий нет. Наиболее распространены датчики положения, работающие на основе эффекта Холла. Датчики реагируют на магнитное поле, их располагают, как правило, на статоре таким образом, чтобы на них воздействовали магниты ротора. Угол между датчиками должен быть 120 градусов.

Имеется в виду “электрических” градусов. Т.е. для многополюсного двигателя физическое расположение датчиков может быть таким:


Иногда датчики располагают снаружи двигателя. Вот один из примеров расположения датчиков. На самом деле это был двигатель без датчиков. Таким простым способом его оснастили датчиками холла.

На некоторых двигателях датчики устанавливают на специальном устройстве, которое позволяет перемещать датчики в определенных пределах. С помощью такого устройства устанавливается угол опережения (timing). Однако, если двигатель требует реверса (вращения в обратную сторону) потребуется второй комплект датчиков, настроенных на обратный ход. Поскольку timing не имеет решающего значения при старте и низких оборотах, можно установить датчики в нулевую точку, а угол опережения корректировать программно, когда двигатель начнет вращаться.

Основные характеристики двигателя

Каждый двигатель рассчитывается под определенные требования и имеет следующие основные характеристики:

  • Режим работы на который рассчитан двигатель: длительный или кратковременный. Длительный режим работы подразумевает, что двигатель может работать часами. Такие двигатели рассчитываются таким образом, чтобы теплоотдача в окружающую среду была выше тепловыделения самого двигателя. В этом случае он не будет разогреваться. Пример: вентиляция, привод эскалатора или конвейера. Кратковременный – подразумевает, что двигатель будет включаться на короткий период, за который не успеет разогреться до максимальной температуры, после чего следует длительный период, за время которого двигатель успевает остыть. Пример: привод лифта, электробритвы, фены.
  • Сопротивление обмотки двигателя . Сопротивление обмотки двигателя влияет на КПД двигателя. Чем меньше сопротивление, тем выше КПД. Измерив сопротивление, можно выяснить наличие межвиткового замыкания в обмотке. Сопротивление обмотки двигателя составляет тысячные доли Ома. Для его измерения требуется специальный прибор или специальная методика измерения.
  • Максимальное рабочее напряжение . Максимальное напряжение, которое способна выдержать обмотка статора. Максимальное напряжение взаимосвязано со следующим параметром.
  • Максимальные обороты . Иногда указывают не максимальные обороты, а Kv – количество оборотов двигателя на один вольт без нагрузки на валу. Умножив этот показатель на максимальное напряжение, получим максимальные обороты двигателя без нагрузки на валу.
  • Максимальный ток . Максимально допустимый ток обмотки. Как правило, указывается и время, в течение которого двигатель может выдержать указанный ток. Ограничение максимального тока связано с возможным перегревом обмотки. Поэтому при низких температурах окружающей среды реальное время работы с максимальным током будет больше, а в жару двигатель сгорит раньше.
  • Максимальная мощность двигателя. Напрямую связана с предыдущим параметром. Это пиковая мощность, которую двигатель может развить на небольшой период времени, обычно – несколько секунд. При длительной работе на максимальной мощности неизбежен перегрев двигателя и выход его из строя.
  • Номинальная мощность . Мощность, которую двигатель может развивать на протяжении всего времени включения.
  • Угол опережения фазы (timing) . Обмотка статора имеет некоторую индуктивность, которая затормаживает рост тока в обмотке. Ток достигнет максимума через некоторое время. Для того, чтобы компенсировать эту задержку переключение фаз выполняют с некоторым опережением. Аналогично зажиганию в двигателе внутреннего сгорания, где выставляется угол опережения зажигания с учетом времени воспламенения топлива.

Так же следует обратить внимание на то, что при номинальной нагрузке Вы не получите максимальных оборотов на валу двигателя. Kv указывается для не загруженного двигателя. При питании двигателя от батарей следует учесть “проседание” питающего напряжения под нагрузкой, что в свою очередь также снизит максимальные обороты двигателя.



Понравилась статья? Поделитесь ей