Контакты

Как повысить силу тока, не изменяя напряжения? Токи высокой частоты. Резонансный трансформатор

В статье речь пойдет про то, как повысить силу тока в цепи зарядного устройства, в блоке питания, трансформатора, в генераторе, в USB портах компьютера не изменяя напряжения.

Что такое сила тока?

Электрический ток представляет собой упорядоченное перемещение заряженных частиц внутри проводника при обязательном наличии замкнутого контура.

Появление тока обусловлено движением электронов и свободных ионов, имеющих положительный заряд.

В процессе перемещения заряженные частицы могут нагревать проводник и оказывать химическое действие на его состав. Кроме того, ток может оказывать влияние на соседние токи и намагниченные тела.

Сила тока - электрический параметр, представляющий собой скалярную величину. Формула:

I=q/t, где I - сила тока, t - время, а q - заряд .

Стоит знать и закон Ома, по которому ток прямо пропорционален U (напряжению) и обратно пропорционален R (сопротивлению).

Сила тока бывает двух видов - положительной и отрицательной.

Ниже рассмотрим, от чего зависит этот параметр, как повысить силу тока в цепи, в генераторе, в блоке питания и в трансформаторе.

От чего зависит сила тока?

Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:

  • Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
  • Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
  • Напряженности магнитного поля. Чем она больше, тем выше напряжение.
  • Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
  • Мощности усилия, которое передается на ротор.
  • Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
  • Конструкции источника питания.
  • Диаметра проводов статора и якоря, числа ампер-витков.
  • Параметров генератора - рабочего тока, напряжения, частоты и скорости.

Как повысить силу тока в цепи?

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по , сделать это можно с помощью специальных устройств.

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

Вариант 1.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой - увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами - нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Вариант 2.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S - сечение провода;
  • l - его длина;
  • ρ - удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь - увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

Как повысить силу тока в блоке питания?

В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.

Ситуация №1.

Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.

При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.

Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.

Кроме того, возможны следующие варианты:

  • Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
  • При наличии защиты по току снизить номинал резистора в цепочке управления.

Ситуация №2.

Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача - увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.

Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.

При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.

Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.

Следующий момент - замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.

После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.

Как повысить силу тока в зарядном устройстве?

В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.

Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.

Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.

С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).

Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров - длины кабеля, его толщины и сопротивления.

С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.

Для использования возможностей приложения достаточно скачать его, установить и запустить.

После этого телефон, планшет или другое устройство подключается к зарядному устройству. Вот и все - остается обратить внимание на параметры тока и напряжения.

Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.

Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.

Измерение силы тока - не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).

Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.

Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.

Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.

Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.

Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.

При подключении 2-амперного ЗУ ничего не меняется - скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.

С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.

Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.

Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.

Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.

Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств - ASUS USB Charger Plus.

Как повысить силу тока в трансформаторе?

Еще один вопрос, который тревожит любителей электроники - как повысить силу тока применительно к трансформатору.

Здесь можно выделить следующие варианты:

  • Установить второй трансформатор;
  • Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
  • Поднять U;
  • Увеличить сечение сердечника;
  • Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
  • Купить новый трансформатор с подходящим током;
  • Заменить сердечник ферромагнитным вариантом изделия (если это возможно).

В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой - 2X.

Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.

С учетом сказанного выше можно сделать следующие выводы:

  • Мощность трансформатора зависит от ширины постоянного магнита.
  • Для увеличения тока в трансформаторе требуется снижение R нагрузки.
  • Ток (А) зависит от диаметра обмотки и мощности устройства.
  • В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную - 0,5 кг, первичка сгорит.

Как повысить силу тока в генераторе?

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима - уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

Частотное регулирование на основе тиристорных преобразователей частоты все ши

ре применяется на судах мирового флота, особенно на специализированных – контейнеро-

возах, судах для транспортировки тяжеловесных грузов и т.п..

Этот вид регулирования – наиболее плавный и экономичный, с диапазоном регули-

рования до 12:1 и выше.

Изменение частоты тока питающей сети влияет на два важных параметра асинхрон

ного двигателя:

1. угловую скорость ω = 2πf (1 – s) / р;

2. критический (максимальный) момент двигателя М = с .

Как следует из приведенных соотношений, при увеличении частоты тока угловая

скорость увеличивается прямо пропорционально частоте, а критический момент уменьша-

ется обратно пропорционально квадрату частоты, что может привести к опрокидыванию

асинхронного двигателя (см. ниже).

Рис. 245. Механические характеристики асинхронного двигателя при изменении частоты тока питающей сети: искусственная (ИМХ) при частоте f = 25 Гц;

естественная (ЕМХ) при частоте f = 50 Гц

Рассмотрим регулирование скорости изменением частоты тока питающей сети от

значения f = 25 Гц до значения f = 50 Гц (рис. 245).

Пусть двигатель работает в точке «С» на искусственной механической характери-

стике при частоте f = 25 Гц. Этой характеристике соответствует критический момент

М и угловая скорость идеального холостого хода ω .

При скачкообразном увеличении частоты тока в 2 раза, т.е. до значения f = 50 Гц,

критический момент уменьшится в 4 раза (М = 0,25 М ), а угловая скорость иде-

ального холостого хода увеличится в 2 раза, до значения ω .

При этом двигатель при постоянстве скорости перейдет из точки «С» в точку «D».

Этой точке соответствует электромагнитный момент, меньший тормозного статического М . Поэтому двигатель станет тормозиться по участку «DE» характеристики, и в точке

«Е» остановится.

При реактивном статическом моменте (насосы, вентиляторы и т.п.) переходный процесс в точке «Е» закончится, т.е. двигатель после остановки ротора в точке «Е» оста

нется стоять под током.

При активном статическом моменте (грузовые лебедки и краны, брашпиль) пере-

ходный процесс в точке «Е» не закончится, двигатель после кратковременной остановки ротора в точке «Е» реверсирует и под действием статического момента М , созданного подвешенным грузом (или судовым якорем), станет разгоняться в обратном направле-

Привод перейдет в режим тормозного спуска, при котором электромагнитный мо-

мент двигателя направлен на подъем, а фактически происходит спуск груза (якоря).

При этом скорость спуска будет непрерывно увеличиваться, т.к. по мере разгона

привода значение тормозного электромагнитного момента двигателя непрерывно умень-

шается (М < М ). Если привод своевременно не остановить, произойдет авария.

Поэтому для электроприводов грузоподъемных и якорно-швартовных механизмов

при регулировании скорости одновременно, в равной степени, изменяют как частоту тока, так и напряжения питающей сети.

Рис. 246. Механические характеристики асинхронного двигателя при одновременном изменении частоты тока и напряжения питающей сети: естественная при частоте f = 50 Гц; искусственные при частотах f = 10, 20, 30 и 40 Гц

Тогда критический момент двигателя М = с = const (cм. рис. 246), поэтому

Ко всем, кого это может коснуться:

Да будет всем известно, что я, Никола Тесла, гражданин Америки, проживающий в Манхеттене, изобрел новые и полезные улучшение в средствах увеличения интенсивности электрических колебаний, которые описаны ниже.

Во многих научных и практичных случаях использования электрических импульсов или колебаний - как, например, в системах передачи данных на расстояния - очень важно увеличить как можно больше импульсы или колебания тока, которые генерируются в схемах передатчика и приемника, особенно в последнем.

Известно, что когда электрические импульсы поданные в схему совпадают со свободными колебаниями, интенсивность колебаний созданных в ней зависит от величины физической константы и соотношения периодов поданных и свободных колебаний. Для получения наилучших результатов необходимо, чтобы периоды вынужденных и свободных колебаний совпадали, в случае чего интенсивность последних будет наибольшей и зависит в основном от индуктивности и сопротивления цепи, их величина будет прямо пропорциональна индуктивности и обратно пропорциональна сопротивлению.

Таким образом, для того, чтобы увеличить колебания в цепи, иными словами увеличить ток или напряжение, нужно делать индуктивность как можно больше и сопротивления как можно меньше. Помня об этом, я изобрел и использовал провода специальной формы и очень большого поперечного сечения; Но я нашел, что возможность увеличивать индуктивность и уменьшать сопротивления ограничено. Это понятно, если принять во внимание, что резонансное увеличение тока или напряжения в цепи пропорционально частоте импульсов и что большая индуктивность в общем вызывает колебания малой частоты.

С другой стороны, увеличение сечения проводника с целью уменьшения сопротивления, после какой-то границы, уменьшает сопротивление мало или не уменьшает, поскольку электрические колебания, особенно высокой частоты, текут в приповерхностном слое, и что эту помеху можно обойти используя многожильные, скрученные провода, но на практике при этом возникают другие преграды, которые часто больше чем польза от их использования.

Хорошо известный факт, что если температура проводника увеличивается, увеличивается и его сопротивление, поэтому конструкторы размещают катушки так, чтобы избежать их нагрева в процессе использования.

Я открыл, что чтобы колебания в цепи были свободными цепь должна работать при низкой температуре при этом колебания возбуждения также должны в большой степени увеличиватся.

Если коротко, то моё изобретение заключается в создании большой интенсивности и длительности колебаний в свободно колеблющейся или резонирующей цепи посредством проведения этого процесса при низкой температуре.

Обычно в коммерческих аппаратах это достигается когда объект изолируется от бесполезного нагревания, что сводит потери к минимуму.

Моё изобретение не только предусматривает экономию энергии, но имеет совершенно новое и ценное свойство увеличивать степень интенсивности и длительности свободных колебаний. Это может быть полезно всегда, когда необходимио накапливать свободно колеблющиеся разряды.

Наилучшим способом реализации изобретения является окружение свободноколеблющейся цепи или проводника, содержашегося при низкой температуре, с помощью подходящей среды (холодный воздух, охлаждающий агент), что приведёт к получению наибольшей самоиндукции и наименьшему сопротивлению. Например, если в системе передчи энергии через окружающую среду передатчик и приёмник подключены к земле и к изолированным терминалам посредством проводников, то длина этих проводников должна быть равна одной-четвёртой длины волны проходяшей через них.

На приложенном рисунке представлена схема аппарата используемого в моём изобретении.

Схема представляет два устройства одно из которых может быть приёмником, а другое передатчиком. Каждыое содержит катушку из нескольких витков имеющих низкое сопротивлеие (обозначено как А и А"). Первичная катушка, предназначенная быть частью передатчика подключена к источнику тока. В каждом приборе имеются плоские спирально намотанные индуктивные катушки В и B", один конец которых подключен к заземлению С, а другой, идущий из центра, к изолированному терминалу выведенному в воздух. Катушки В помещены в ёмкость содержащую охлаждающий агент вокруг которой намотаны катушки А. Катушки в форме спирали предназначены для создания свободных колебаний. Конечно, форма их может быт любой.

Теперь предположим, в простейшем случае, что на катушку А передатчика действуют импульсы произвольной частоты. Аналогичные импульсы будут индуктироваться и в катушках В, но с большей частотой. И это увеличение будет прямо пропоцианально их индуктивности и обратно пропоцианально их сопротивлению. А раз остальные условия остануться прежними, то интенсивность колебаний в резонирующей цепи В возрастёт в той-же пропорции в которой сопротивление уменьшится.

Однако зачастую условия могут быть таковы, что достижение цели заключается не только за счёт уменьшения сопротивления цепи, но и за счёт манипуляций длиной проводников и соответственно индуктивностью и сопротвлением, что определяет интенсивность свободных колебаний.

Колебания в катушке В, значительно усиленные, распространяются и достигают настроенной на приём катушки В" воозбуждая соответственные колебания в ней и которые по аналогичной причине усиливаются, что ведёт к увеличению токов или колебаний в цепях А" приёмного устройства. Кода цепь А периодически открывается и закрывается эффект в приёмнике повышается описанным способом, не только из-за усиления импульсов в катушах В, но и из-за их способности существовать в больших интервалах времени.

Изобретение наиболее эффективно, когда импульсы в цепи А передатчика вместо произвольных частот имеют частоту собственных колебаний, иначе говоря были возбуждены свободными колебаниями высокочастотных разрядов конденсатора. В таком случае охлаждение проводника А ведёт к значительному увеличению колебаний в резонирующей цепи В. Прёмные катушки B" возбуждаются сильнее пропорционально и индуцируют токи высокой интенсивности в цепи А". Очевидно, что чем больше число свободно вибрирующих цепей поочерёдно передают и принимают энергию, тем относительно больше будет эффект посредством применения моего изобретения.

По утверждению Теслы, год, проведенный им в Питсбурге, был потерян для исследовательских работ в области многофазных токов. Возможно, что это утверждение близко к истине, но возможно и то, что именно этот год стал началом дальнейших творческих успехов изобретателя. Дискуссия с инженерами завода Вестингауза не прошла бесследно. Обоснование предложенной им частоты переменного тока в 60 периодов требовало более тщательного анализа экономической эффективности применения как меньших, так и более высоких частот. Научная добросовестность Теслы не позволяла ему оставить этот вопрос без тщательной проверки.

Возвратившись в 1889 году из Европы, он принялся за конструирование генератора переменного тока большой частоты и вскоре создал машину, статор которой состоял из 348 магнитных полюсов. Этот генератор давал возможность получать переменный ток с частотой в 10 тысяч периодов в секунду (10 кГц). Вскоре ему удалось создать и еще более высокочастотный генератор и начать изучение различных явлений при частоте 20 тысяч периодов в секунду.

Исследования показали, что по мере увеличения частоты переменного тока можно значительно уменьшить объем железа в электромагнитных электродвигателях, а начиная с определенной частоты, можно создавать электромагниты, состоящие из одних только обмоток, вообще без железа в катушках. Двигатели, созданные из таких электромагнитов без железа, были бы чрезвычайно легкими, но во многих других отношениях неэкономичны, и уменьшение затрат металла не окупалось бы из-за значительного увеличения потребления электроэнергии.

Исследуя широкий диапазон частот переменного тока первоначально в пределах, которые могли бы быть применены в многофазной системе (25-200 периодов в секунду), Тесла вскоре перешел к изучению свойств и возможностей практического использования токов повышенных (10-20 тысяч периодов в секунду) и высоких (20-100 тысяч периодов в секунду) частот. Для получения значительно большего числа периодов и значительно более высоких напряжений, чем это могло быть достигнуто созданными им генераторами токов высокой частоты, необходимо было найти и опереться на иные принципы. Хорошо знакомый с мировой литературой по электрофизике и электротехнике, Тесла изучил работу знаменитого американского физика Джозефа Генри, высказавшего еще в 1842 году предположение, что при некоторых электрических разрядах (в том числе и разряде лейденской банки) имеются не только "главные разряды", но и встречные, причем каждый последующий несколько слабее предыдущего. Так было впервые замечено существование затухающего двухстороннего электрического разряда.

Тесла знал и о том, что спустя одиннадцать лет после Генри английский физик лорд Кельвин экспериментально доказал, что электрический разряд конденсатора есть процесс двухсторонний, продолжающийся до тех пор, пока энергия его не будет израсходована на преодоление сопротивления среды. Частота этого двухстороннего процесса достигает 100 миллионов колебаний в секунду. Искра между шариками разрядника, кажущаяся однородной, в действительности состоит из нескольких миллионов искр, проходящих в короткий промежуток времени в обе стороны.

Кельвин дал математическое выражение процесса двухстороннего разряда конденсатора. Позднее Феддерсон, Шиллер, Кирхгоф, Гельмгольц и другие исследователи не только проверили правильность этого математического выражения, но и значительно дополнили теорию электрического разряда. Знаком был Тесла и с работами Антона Обербанка, наблюдавшего явление электрического резонанса, то есть процесс резкого возрастания амплитуды (размаха) колебаний при приближении частоты внешнего колебания к частоте собственные внутренних колебаний системы.

Хорошо известны были ему и опыты Герца и Лоджа, занимавшихся изучением электромагнитных волн. Особенно большое впечатление на Теслу произвели эксперименты Генриха Герца, подтвердившие теоретические предположения Джемса К. Максвелла о волновой природе электромагнитных явлений. Надо заметить, что в работах Герца Тесла впервые нашел указание на явление так называемых "стоячих электромагнитных волн", то есть волн, накладывающихся одна на другую так, что они в одних местах усиливают друг друга, создавая "пучности", а в других уменьшают до нуля, создавая "узлы".

Зная все это, Никола Тесла в 1891 году закончил конструирование прибора, сыгравшего исключительную роль в дальнейшем развитии самых различных отраслей электротехники и особенно радиотехники. Для создания токов высокой частоты и высокого напряжения он решил воспользоваться известным свойством резонанса, то есть явлением резкого возрастания амплитуды собственных колебаний какой-либо системы (механической или электрической) при наложении на них внешних колебаний с той же частотой. На основании этого известного явления Тесла создал свой резонансный трансформатор.

Действие резонансного трансформатора основано на настройке в резонанс его первичного и вторичного контуров. Первичный контур, содержащий как конденсатор, так и индукционную катушку, позволяет получить переменные токи весьма высокого напряжения с частотами в несколько миллионов периодов в секунду. Искра между шариками разрядника вызывает быстрые изменения магнитного поля вокруг первичной катушки вибратора. Эти изменения магнитного поля вызывают возникновение соответствующего высокого напряжения в обмотке вторичной катушки, состоящей из большого числа витков тонкой проволоки, причем частота переменного тока в ней соответственно количеству искровых разрядов достигает нескольких миллионов перемен в секунду.

Наибольшей величины частота достигает в момент, когда периоды первичной и вторичной цепи совпадают, то есть когда наблюдается явление резонанса в этих цепях.

Тесла разработал очень простые методы автоматической зарядки конденсатора от источника тока низкого напряжения и разрядки его через трансформатор с воздушным сердечником. Теоретические расчеты изобретателя показали, что даже при самых незначительных величинах емкости и индукции в созданном им резонансном трансформаторе при соответствующей настройке можно получить путем резонанса весьма высокие напряжения и частоты.

Открытые им в 1890 году принципы электрической настройки резонансного трансформатора и возможность изменять емкость для изменения длины волны электромагнитных колебаний, создаваемых трансформатором, стали одним из наиболее важных оснований радиотехники, а мысли Теслы об огромной роли конденсатора и вообще емкости и самоиндукции в развитии электротехники оправдались.

При создании резонансного трансформатора пришлось решить еще одну практическую задачу: найти изоляцию для катушек сверхвысокого напряжения. Тесла занялся вопросами теории пробоя изоляции и на основании этой теории нашел лучший способ изолировать витки катушек - погружать их в парафиновое, льняное или минеральное масло, называемое теперь трансформаторным. Позднее Тесла еще раз возвратился к разработке вопросов электрической изоляции и сделал весьма важные выводы из своей теории.

Едва начав опыты с токами высокой частоты, Никола Тесла ясно представил себе огромные перспективы, открывавшиеся перед человечеством при широком использовании токов высокой частоты. Направление работ Теслы свидетельствует о необычайно разносторонних выводах, которые он сделал из своего открытия.

Прежде всего, он пришел к убеждению, что электромагнитные волны играют исключительно важную роль в большинстве явлений природы. Взаимодействуя друг с другом, они либо усиливаются, либо ослабляются, либо вызывают новые явления, происхождение которых мы иногда приписываем совершенно другим причинам. Но не только электромагнитные излучения играют огромную роль в самых различных явлениях природы. Тесла интуицией большого ученого понял значение различных излучений еще до замечательных открытий радиоактивных элементов. Когда позднее, в 1896 году, Анри Беккерель, а затем Пьер и Мария Кюри открыли это явление, Тесла нашел в этом подтверждение своих предвидений, высказанных им еще в 1890 году.

Огромное значение переменных токов в развитии промышленности, получившей, наконец, необходимый ей электродвигатель, стало ясно Николе Тесле при первом же знакомстве с преимуществами трехфазного тока, требующего для его передачи всего лишь три провода. Для Теслы уже в то время было несомненно, что должен быть открыт способ передачи электроэнергии и вовсе без проводов, с помощью электромагнитных волн. Эта проблема привлекла внимание Теслы, стала предметом его занятий еще в конце 1889 года.

Однако практическое применение токов высокой частоты для самых разнообразных целей требовало изучения на первый взгляд самых различных, не связанных между собой вопросов. Эти-то эксперименты в широком масштабе и начал проводить в своей лаборатории Никола Тесла.

Начав систематические опыты с токами высокой частоты и высокого напряжения, Тесла должен был прежде всего разработать меры защиты от опасности поражения электрическим током. Эта частная, вспомогательная, но весьма важная задача привела его к открытиям, заложившим основу электротерапии - обширной области современной медицины.

Ход мыслей Николы Теслы был чрезвычайно оригинален. Известно, рассуждал он, что постоянный ток низкого напряжения (до 36 вольт) не оказывает вредных действий на человека. По мере повышения напряжения возможность поражения быстро возрастает.

С увеличением напряжения, поскольку сопротивление тела человека практически неизменно, сила тока так же увеличивается и достигает при 120 вольтах угрожающей величины. Более высокое напряжение становится опасным для здоровья и жизни людей.

Иное дело ток переменный. Для него предел опасного напряжения значительно выше, чем для постоянного, и этот предел отодвигается с повышением частоты. Известно, что электромагнитные волны очень высокой частоты не оказывают никакого болезненного действия на человека 10 . Пример тому свет, воспринимаемый при нормальной яркости здоровым глазом без всяких болезненных ощущений. В пределах каких же частот и напряжений переменный ток опасен? Где начинается зона безопасного тока?

Шаг за шагом исследовал Тесла действие переменного электрического тока на человека при разных частотах и напряжениях. Опыты он проводил на самом себе. Сначала через пальцы одной руки, затем через обе руки, наконец, через все тело пропускал он токи высокого напряжения и высокой частоты. Исследования показали, что действие электрического тока на человеческий организм складывается из двух составляющих: воздействия тока на ткани и клетки нагревом и непосредственного воздействия тока на нервные клетки.

Оказалось, что нагревание далеко не всегда вызывает разрушительные и болезненные последствия, а воздействие тока на нервные клетки прекращается при частоте свыше 700 периодов, аналогично тому, как слух человека не реагирует на колебания свыше 2 тысяч в секунду, а глаз - на колебания за пределами видимых цветов спектра.

Так была установлена безопасность токов высоких частот даже при высоких напряжениях. Более того, тепловые действия этих токов могли быть использованы в медицине, и это открытие Николы Теслы нашло широкое применение; диатермия, лечение УВЧ и другие методы электротерапии есть прямое следствие его исследований. Тесла сам разработал ряд электротермических аппаратов и приборов для медицины, получивших большое распространение как в США, так и в Европе. Его открытие было затем развито другими выдающимися электриками и врачами.

Однажды, занимаясь опытами с токами высокой частоты и доведя напряжение их до 2 миллионов вольт, Тесла случайно приблизил к аппаратуре медный диск, окрашенный черной краской. В то же мгновение густое черное облако окутало диск и тотчас поднялось вверх, а сам диск заблестел, словно чья-то невидимая рука соскоблила всю краску и отполировала его.

Удивленный Тесла повторил опыт, и снова краска исчезла, а диск сиял, поддразнивая ученого. Повторив десятки раз опыты с разными металлами, Тесла понял, что он открыл способ их очистки токами высокой частоты.

"Любопытно, - подумал он, - а не подействуют ли эти токи и на кожу человека, не удастся ли с их помощью снимать с нее различные, трудно поддающиеся удалению краски".

И этот опыт удался. Кожа руки, окрашенная краской, мгновенно стала чистой, как только Тесла внес ее в поле токов высокой частоты. Оказалось, что этими токами можно удалять с кожи лица мелкую сыпь, очищать поры, убивать микробы, всегда в изобилии покрывающие поверхность тела человека. Тесла считал, что его лампы оказывают особое благотворное действие не только на сетчатку глаза, но и на всю нервную систему человека. К тому же лампы Теслы вызывают озонирование воздуха, что также может быть использовано в лечении многих болезней. Продолжая заниматься электротерапией, Тесла в 1898 году сделал обстоятельное сообщение о своих работах в этой области на очередном конгрессе Американской электротерапевтической ассоциации в Буффало.

В лаборатории Тесла пропускал через свое тело токи напряжением в 1 миллион вольт при частоте 100 тысяч периодов в секунду (ток достигал при этом величины в 0,8 ампера). Но, оперируя с токами высокой частоты и высокого напряжения, Тесла был очень осторожен и требовал от своих помощников соблюдения всех им самим выработанных правил безопасности. Так, при работе с напряжением в 110- 50 тысяч вольт при частоте в 60-200 периодов он приучил их работать одной рукой, чтобы предотвратить возможность протекания тока через сердце. Многие другие правила, впервые установленные Теслой, прочно вошли в современную технику безопасности при работе с высоким напряжением.

Создав разнообразную аппаратуру для производства опытов, Тесла в своей лаборатории начал исследование огромного круга вопросов, относящихся к совершенно новой области науки, в которой его больше всего интересовали возможности практического использования токов высокой частоты и высокого напряжения. Работы его охватывали все многообразие явлений, начиная от вопросов генерирования (создания) токов высокой частоты и кончая детальным изучением различных возможностей их практического использования. С каждым новым открытием возникали все новые и новые проблемы.

Как одна из частных задач Теслу заинтересовала возможность использовать открытие Максвеллом и Герцем электромагнитной природы света. У него возникла мысль: если свет представляет собой электромагнитные колебания с определенной длиной волны, нельзя ли искусственно получить его не путем нагрева нити электрической лампы накаливания (что дает возможность использовать лишь 5 процентов энергии, превращающейся в световой поток), а путем создания таких колебаний, которые вызвали бы появление световых волн? Эта задача и стала предметом исследований в лаборатории Теслы в начале 1890 года.

Вскоре он накопил огромное количество фактов, позволивших перейти к обобщениям. Однако осторожность Теслы заставила его проверять десятки и сотни раз каждое свое утверждение. Он повторял сотни раз каждый опыт, прежде чем делал из него какие-либо выводы. Необычайность всех открытий Николы Теслы и огромный авторитет его привлекли внимание руководителей Американского института электроинженеров, вновь, как и три года назад, пригласивших Теслу прочесть лекцию о своих работах. Тесла избрал тему: "Опыты с переменными токами весьма высокой частоты и их использование для искусственного освещения".

По традиции, установившейся с первых лет существования института, было разослано ограниченное число приглашений лишь самым выдающимся электротехникам. Перед такой избранной аудиторией 20 мая 1892 года Тесла и прочел одну из своих самых вдохновенных лекций и продемонстрировал опыты, уже осуществленные им в своей лаборатории.

Нет ничего, что в большей степени могло бы привлечь внимание человека и заслужило бы быть предметом изучения, чем природа. Понять ее огромный механизм, открыть ее созидательные силы и познать законы, управляющие ею, - величайшая цель человеческого разума, - этими словами начал Тесла свое выступление.

И вот он уже демонстрирует перед слушателями результаты своих исследований в новой, еще никем не изученной области токов высокой частоты.

Рассеяние электромагнитной энергии в пространстве, окружающем источник токов высокой частоты, позволяет использовать эту энергию для самых различных целей, - убежденно говорит ученый и тут же показывает замечательный опыт. Он выдвигает гениальное положение о возможности передачи электроэнергии без проводов и в доказательство заставляет как обычные лампы накаливания, так и специально им созданные лампы без нитей внутри светиться, внося их в переменное электромагнитное поле высокой частоты. - Освещение лампами подобного рода, - говорит Тесла, - где свет возникает не под действием нагрева нитей протекающим током, а вследствие особых колебаний молекул и атомов газа, будет проще, чем освещение современными лампами накаливания. Освещение будущего, - подчеркивал ученый, - это освещение токами высокой частоты.

Особенно подробно остановился Тесла на описании своего резонансного трансформатора как источника волн весьма высокой частоты и снова подчеркнул значение разряда конденсатора в создании таких колебаний. Тесла правильно оценил большое будущее этой важнейшей детали современных радиотехнических средств. Он выразил эту мысль следующими словами:

Я думаю, что разряд конденсатора будет в будущем играть важную роль, так как он не только предоставит возможность получать свет более простым способом в том смысле, какой указывает изложенная мною теория, но окажется важным и во многих других отношениях.

Подробно изложив результаты экспериментов с токами высокой частоты, получаемыми с помощью резонансного трансформатора, Тесла завершил лекцию словами, свидетельствующими о его ясном представлении значения дальнейшего изучения явлений, над которыми его работы едва приоткрыли завесу тайны:

Мы проходим с непостижимой скоростью через бесконечное пространство; все окружающее нас находится в движении, и энергия есть повсюду. Должен найтись более прямой способ утилизировать эту энергию, чем известные в настоящее время. И когда свет получится из окружающей нас среды и когда таким же образом без усилий будут получаться все формы энергии из своего неисчерпаемого источника, человечество пойдет вперед гигантскими шагами.

Одно созерцание этой великолепной перспективы подымает наш дух, укрепляет нашу надежду и наполняет наши сердца величайшей радостью.

Под бурные аплодисменты Тесла закончил свое замечательное выступление. Необычайность всего показанного и особенно смелые выводы ученого, видевшего революционные последствия своих открытий, поразили слушателей, хотя далеко не все поняли содержание лекции так глубоко, как того хотелось бы Николе Тесле.


Инструкция

Подключите электродвигатель к источнику тока с изменяемой ЭДС. Увеличивайте ее значение. Вместе с ней будет увеличиваться напряжение на обмотках электродвигателя. Учитывайте, что если пренебречь потерями на подводящих проводниках, которые очень незначительны, то ЭДС источника равно напряжению на обмотках. Рассчитайте увеличение мощности электродвигателя. Для этого найдите, во раз напряжение, и возведите это значение в квадрат.

Пример. Напряжение на обмотках электродвигателя было увеличено со 110 до 220 В. Во сколько раз его мощность? Напряжение увеличилось в 220/110=2 раза. Поэтому мощность двигателя стала больше в 2²=4 раза.

Перемотайте обмотку электродвигателя. В подавляющем большинстве случаев, для обмотки электродвигателя используется медный проводник. Используйте провод такой же длины, но с большим сечением. Сопротивление обмотки уменьшится, а ток в ней двигателя во столько же раз увеличатся. Напряжение на обмотках должно оставаться неизменным.

Пример. Двигатель с сечением обмотки 0,5 мм² перемотали проводом с сечением 0,75 мм². Во сколько раз увеличилась его мощность, если неизменно? Сечение обмотки увеличилось в 0,75/0,5=1,5 раза. Во столько же раз увеличилась и мощность двигателя.

При включении трехфазного асинхронного двигателя в бытовую однофазную сеть, увеличьте его полезную мощность. Для этого отключите одну из его обмоток. Исчезнет тормозящий момент, генерируемый при работе всех обмоток, и полезная мощность двигателя увеличится.

Увеличьте мощность асинхронного электродвигателя переменного тока, увеличив частоту переменного тока, протекающего по обмоткам. Для этого к двигателю присоедините частотный преобразователь. Увеличивая на нем частоту подаваемого тока, увеличьте мощность электродвигателя. Значение мощности фиксируйте тестером, работающим в режиме ваттметра.

Видео по теме

Как повысить обороты бизнеса или как увеличить продажи – это центральная проблема любого коммерческого предприятия и главная цель комплекса маркетинга любого уровня. В сущности, проблема, как повысить обороты, распадается на три составляющих: это управление ценообразованием, ассортиментом и сбытом.

Инструкция

Управление ценообразованием с целью увеличить продажи – самый очевидный способ. Однако простым увеличением цены на тот же самый не решить на качественном уровне. Поскольку обороты – это не только денежное, но и количественное выражение объемов . Поэтому, чтобы увеличить продажи, нужно отдельно продвижением продукции. Продвижение – это как раз то, на что направлен комплекс маркетинговых инструментов. И в результате их грамотного применения удается повысить обороты в количественном отношении.

Другой способ увеличить продажи реализуется через управление товарным ассортиментом. Данные меры включают в себя мероприятий, направленных, во-первых, на работу с качеством продукции, во-вторых, на расширение и оптимизацию продвигаемого ассортимента товаров. Повышение качества продукции позволяет получить новые продажи как за счет роста потребления товаров имеющимися клиентами, так и за счет подключения новых покупателей. Во втором случае часто применяют ABC-анализ, помогающий определить приоритетные группы товаров.

Повысить обороты можно, войдя на новые рынки и заняв свободные ниши. Конечно, сегодня найти незанятые конкурентами рынки уже почти нереально. Также обстоит ситуация и со свободными нишами. В практическом плане данное расширение, как правило, сводится к движению из города с высокой плотностью торговли к разреженным деревенским просторам. Однако это влечет за собой сопутствующие трудности, например, транспортную инфраструктуру. Поэтому самый часто встречающийся тип расширения – это конкурентная борьба. Она происходит за счет вытеснения конкурентов с занимаемых ими позиций, а также переманивания их ключевых клиентов.

Видео по теме

Двигатели автомобилей Волжского автозавода выпускаются небольшого объема, но, как известно, литраж мотора можно с успехом увеличить. Благодаря чему в последствии увеличивается мощность и динамика автомобиля, что подталкивает приверженцев управления машиной в спортивном стиле к осуществлению тюнинга двигателя.

Вам понадобится

  • - новая поршневая группа, - новый коленвал. - помощь моториста.

Инструкция

Мотористы, в случае обращения к ним за советом, могут предложить несколько вариантов по увеличению объема , выбор одного из них зависит от пожелания заказчика, а также от того, какую сумму владелец готов потратить на реконструкцию двигателя.

Простейший и малозатратный по средствам вариант предусматривает банальную расточку гильз блока под установку , что в итоге незначительно, но все же увеличит литраж . Применение данного метода форсирования двигателя повлечет за собой лишь расходы, связанные с приобретением новой поршневой группы.

Наряду с этим существует еще один вариант увеличения объема двигателя, который предусматривает замену штатного коленвала другим, имеющим увеличенный радиус кривошипа. Соответственно, коленвал, специального исполнения не может устанавливаться в двигатель в комплекте с обычными поршнями, поэтому данный метод форсирования предусматривает также приобретение специальной поршневой группы. В результате проведения подобного тюнинга мотора увеличивается рабочий ход поршня, что существенно увеличивает объем каждого цилиндра в частности, и увеличивает литраж двигателя в целом.

Какой из двух вариантов по увеличению объема двигателя выбрать, каждый автомобилист решает для себя сам. Но не стоит забывать о том, что форсирование двигателя выполняется только в специализированной мастерской высококвалифицированными специалистами, в распоряжении который имеются высокоточные приборы и необходимое оборудование, и которые помогут владельцу определиться с выбором конкретного варианта по увеличению объема мотора.

Видео по теме

Обратите внимание

Иногда для увеличения мощности мотора вносятся изменения в газораспределительный механизм, предусматривающий реконструкцию головки блока цилиндров с заменой распредвала и клапанов. Изучите и этот вариант форсирования двигателя. Кто знает, может он окажется еще эффективнее по части выявления скрытых возможностей силовой установки.

Источники:

  • Увеличиваем рабочий объем двигателя » Авто новости

Отважившись на форсирование двигателя, а именно этим и достигается цель по наращиванию мощности мотора, владельцу необходимо осознать тот факт, что увеличение в одном месте повлечет за собой сокращение в чем-то другом. В данном случае, в результате тюнинга обязательно уменьшится ресурс силовой установки.

Вам понадобится

  • - адаптер;
  • - ноутбук;
  • - специальное программное обеспечение.

Инструкция

Процесс чип-тюнинга происходит по следующей схеме:
- на предварительном этапе проводится доскональная диагностика всех систем ;

К разъему машины через специальный адаптер подключается ноутбук, в котором инсталлировано соответствующее программное обеспечение;

Запущенным приложением открываются таблицы электронного блока управления, в которых заменяются заводские параметры новыми цифровыми значениями;

Внесенные изменения сохраняются, после чего осуществляется контрольный пуск двигателя.

Если владельца удовлетворяет результат проведенного чип-тюнинга, он продолжает какое-то время эксплуатацию машины с улучшенными характеристиками силовой установки.

Но как известно, аппетит приходит во время еды. И испытав однажды удовольствие от езды на машине с форсированным мотором, остановиться на этом пути уже не получается. И когда наступает пора капитального ремонта двигателя, устанавливать в него запасные части, рекомендованные производителем, для любителей агрессивного стиля вождения не имеет смысла.

Чтобы по-настоящему форсировать мотор, требуется установить коленвал с измененным радиусом кривошипа, кованые поршни, заменить распредвал и отполировать внутренние поверхности всасывающего и выхлопного коллекторов. Высшим пилотажем в тюнинговой процедуре является установка турбины.



Понравилась статья? Поделитесь ей